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The transition matrices for sampling along a realization of a Markov chain, suggested by 
Fliun and McManus (Whys. Rev. 124 (1961), 54) and by Metropolis et al. (J. Chem. Whys. 
21 (1953), 1087) are compared by determining the convergence rates for several simple 
model systems. Although it is possible to construct model systems for which the Flit 
and McManus matrix leads to more rapid convergence we argue that the Metropolis matrix 
will be superior, from a computational point of view, for many systems including all those 
(such as fluids) with many states accessible at each step. 

INTRODUCTION 

Since their inception in 1953, Metropolis-type Monte Carlo methods [l, 21 have 
played a useful role in the statistical mechanical studies of many-body systems. The 
idea of the method is to sample along a realization of a Markov chain, defined on the 
configuration space of the system, such that the unique limit distribution of the 
Markov chain is the distribution of physical interest (e.g., the Boltimann distribution). 
Metropolis and coworkers [l] suggested an ingenious way of constructing a Markov 
chain, with Boltzmann limiting distribution, so that it is unnecessary to evaluate 
the partition function when computing mechanical quantities. 

Of course’it is possible to construct many different Markov chains which have the 
same unique limit distribution and one needs a criterion by which to determine 
whether one is better than another from a computational point of view. 

Consider a transition matrix P defined on the set of states i = 1,2, 3,... such that 
the limit distribution of the Markov chain is (vi}. Two popular forms for P are the 
original suggestion of Metropolis et al. [l] 

pz$ = qij min{ 1, ?Tj/Ti}, i #j, (1) 

or another suggested by Flinn and McManus [3] (FM) 

PG = 4ijrjl(ra + ri), i #j, (2) 

with pii in either case chosen to make P stochastic: 

PU = l - C Pij ; 
izi 

(3) 
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qii are the elements of a symmetric but otherwise arbitrary stochastic matrix. We 
examine the usual case in which the qij are not themselves explicit functions of 7~~ , 
7rj . Both of these Markov chains have the required limit distribution so that both 
appear to be appropriate for a Monte Carlo calculation. However, in certain circum- 
stances one of them may have computational advantages over the other. 

Peskun [4] has discovered the very important and interesting result that the asymp- 
totic variance of any mechanical quantity is never less for the Flinn and McManus 
form than the corresponding asymptotic variance for the Metropolis form. This 
demonstrates that the Metropolis form is always superior for very long realizations 
of the Markov chain. Unfortunately one is always limited to finite (and often to quite 
short) realizations in practice and a second concern is therefore the rate of convergence 
to the limit distribution. 

Recently Cunningham and Meijer [5] compared the Metropolis and FM schemes for 
an Ising problem, and came to the conclusion that the FM method led to a smaller 
variance and more rapid convergence. On the other hand, most workers in the field 
have favored the Metropolis method, on the basis of somewhat intuitive arguments 
which suggest it may lead to more rapid convergence. This apparent disagreement 
has led us to reexamine the problem. In particular we have studied analytically a 
number of simple model systems in an attempt to understand the circumstances which 
will make one method or the other superior from the point of view of convergence 
rates. 

The intuitive considerations supporting the Metropolis method are vague, but might 
be formulated in this way. Since the transition probability to a new state is always 
larger for the Metropolis case than for the FM case (for a given underlying symmetric 
matrix 11 qii II), the former chain tends to move around in the state space more than the 
latter. This greater mobility of the Metropolis chain should mean that the sampling 
will span the relevant space more rapidly and thus may lead to more rapid con- 
vergence. 

An alternative hunch for the desirable characteristic of a transition matrix might 
be that at each step the chain should as closely as possible choose from the accessible 
states according to their relative probabilities in the limiting distribution {ri}. By 
“accessible,” in this context, we refer to the states which can possibly be reached in 
a single step; this accessibility of states is determined by the qii matrix, and its choice 
is determined by various computational considerations which do not concern us 
here. 

These two intuitions turn out to be closely related for most simulations of physical 
interest, where at each step there are very many accessible states of different energies. 
This is because both are associated with a probability pii of repeating the state i 
which is normally very much larger than the other pij . That will be true for both the 
Metropolis and FM schemes, but we have pg < pz (cf. Eqs. (l), (2), (3)). This is 
associated with a higher mobility in the Metropolis case but also with a relative 
distribution among the accessible states somewhat less distorted from that of the 
limiting distribution. These intuitive notions are later examined in the light of our 
exact results for simple model systems. 
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CONVERGENCE 

In this section we discuss the property of the transition matrix which determines 
the rate of convergence to the limit distribution. Suppose that ‘TT~(~) is the probability 
that the system is in state i after t steps in a realization of the Markov chain. It is 
clear that 

q(t + 1) = c pijn(t) (4) 
z 

and it is easy to show that the solution of this set of difference equations is 

where the A, are the eigenvalues of P and oljl, are constants related to the left eigen- 
vectors of P and to the initial conditions. Since P is stochastic it will have a unit 
eigenvalue and all other eigenvalues will have moduli less than unity (provided that 
the chain is irreducible). It is clear that for a long realization the convergence rate 
is determined by the magnitude of the nonunit eigenvalue whose modulus is closest 
to unity. We shall call this the “subdominant eigenvalue.” This gives a method for 
the examination of convergence rates for model systems. 

SIMPLE MODEL CASES 

(a) Two State Model 

It is easy to examine this simplest case in detail [6]. If, as is usual, qii is chosen to 
be zero, then the FM method leads to more rapid convergence than the Metropolis. 
Indeed, this is almost obvious, since the FM chain (2) then ensures that the limit 
distribution is attained in a single step! 

More formally we examine [6] the eigenvalues of the corresponding transition 
matrices. Those for the Metropolis case (taking rrl > 7-rZ and q12 = qzl = q) are 
(1, 1 - q/x1) and those for the FM case (1, 1 - q). When q = 1, which would corre- 
spond to the usual choice of qii = 0 for systems of practical interest, the FM case 
has a subdominant eigenvalue of zero, associated with the instant convergence noted 
above. (Of course, one could choose values of q such that convergence would be more 
rapid for the Metropolis case.) It is interesting to note that n1 = ZT~ = 3 and q = 1 
leads to a subdominant eigenvalue of -1 for the Metropolis case. This is associated 
with an undamped oscillation (cf. Eq. (5)) corresponding to the strict alternation 
between the two states. In this case the chain does not converge, although averages 
of state functions will do so. 

(b) A Four State Problem: The Two Spin Ising Model 

The Ising problem studied by Cunningham and Meijer consisted of a sequence of 
two state problems associated with the “flipping” of one spin at a time (with qii = 0). 
One might conjecture that the above result on the two state system therefore explains 



ALTERNATIVE TRANSITION MATRICES 153 

the faster convergence of the FM scheme noted by Cunningham and Meijer. We shall 
show that the situation is in fact more involved. 

In the Cunningham and Meijer realization moves were attempted for the spins in 
an ordered sequence, rather than by choosing a spin at random. This “cyclic” proce- 
dure corresponds to a periodic inhomogeneous Markov chain. However it is not 
difficult to show (cf. [7]) that the states of the system at the end of each complete 
cycle form a realization of a Markov chain with a constant transition matrix, providing 
that the transition matrix for each step of the cycle satisfies (4). We examine the 
constant transition matrix representing a whole cycle of attempted moves. 

In the two spin case there are four possible states which we can represent as 
TT T.J &I’ S.I. 
1 2 3 4 

and there are two steps in the cycle. Now ?~r = rd and rrZ = rrS . We set the Boltzmann 
factor ?r&rl = l9 < 1; this is the “ferromagnetic” case. Of course the conclusions 
would be the same for the antiferromagnetic choice. 

With the Metropolis method the transition matrix describing one cycle of moves is 

(1 - ey e(i - e) 0 
0 e 
e 0 (6) 

0 e(l - e) (1 - ey 

It is interesting that although this has the correct limiting distribution, since it satis- 
fies (4), it does not satisfy the condition of microscopic reversibility, which is 

7Tipij = TTjpj, s Q 

The eigenvalues of the matrix are 

(1, 82, $(i - 48 + e2) h gi - 88 + 1482 - 883 + eyy. 

For the case 8 = 0 these eigenvalues are (1, 1, 0,O). The repeated unit eigenvalue 
corresponds to a reducible chain. The states break down into the two sets (1,3) and 
(2,4), neither of which can be reached from the other. The zero eigenvalues again 
indicate instant convergence within either set. For 0 < (3 - 8l/3 all four eigenvalues 
are real and positive. For the remaining range of 8 there are two conjugate complex 
eigenvalues, which we may as usual write in the form A exp(*i$), displaying their 
modulus A. These solutions will correspond to oscillatory behavior with a period 
depending on 4(e). The oscillation will be damped, provided that A < 1, by a factor 
At, so that (since A is closer to unity than &) A is the quantity which should be 
compared with the subdominant eigenvalue of the FM method. 

In the FM case the transition matrix becomes 

I (8) 
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where 01 = (1 + 0)-l and /I = 19(1 + 0)-l. Once again the matrix does not satisfy the 
microscopic reversibility condition. The eigenvalues are (1, (1 - fQz/(l + 8)2, 0,O) 
and are always real and positive. For 0 = 0 the chain is reducible, as for the Metro- 
polis case, and the convergence is again instantaneous within each set of states. If 
8 = 1, however, the eigenvalues are (1, 0, 0,O) and the limiting distribution is attained 
in a single cycle. 

It turns out that the relative convergence rates of the two methods now depend on 
the value of the Boltzmann factor 8. For 0 > 0.293... the FM subdominant eigenvalue 
is smaller than (1, while at lower values of 8 it is larger than /1 (or, below (3 - W2), 
the Metropolis subdominant eigenvalue). The FM method is therefore preferable 
for high 8, and indeed becomes very much so as 8 + 1. For low 0, however (where 
pii will tend to be high in each case) the Metropolis method will show faster con- 
vergence. 

There is no single quantity corresponding to 6’ in Cunningham and Meijer’s actual 
many-spin system, of course. An estimate of the corresponding magnitude comes 
from the Boltzmann factor associated with the interaction energy J between a pair 
of spins, exp(-1 J I/W). The authors studied systems in which this quantity varied 
from 0.37 to 0.91. Of course the value at which the FM method would become 
preferable is not known for this system, and indeed the situation may not be that 
simple. 

(c) Another Two Spin Zsing Problem 

A simpler but related problem arises if at each step a trial “spin flip” is attempted for 
a spin chosen at random. The Metropolis and FM transition matrices are then 

with eigenvalues (1, 0, -0, 1 - @, and 

i 

1 - B I312 PI2 0 

pF 42 P 0 = 
4 0 B 42 
0 'PI2 812 1 4 i - B 

(9 

w-3 

with eigenvalues (1, 0, (1 + 8)-l, e(l + @-I). It is clear that e(l + 0)-l < (1 + 0)-l > 
1 - 8, so we must compare 0 (from the Metropolis case) with (1 + 0)-l (from the 
FM case). Once again convergence will be more rapid for the FM case if 0 is large, 
in this case if 0 > $(5l/” - 1) = 0.618. However, when there is a large energy 
difference associated with flipping a spin (so that 0 is small) the Metropolis method 
will be superior. Of course the critical value may be expected to depend on the number 
of spins. 

The above examples make it clear that the choice of method will depend on the 
form of the distribution {n*} being sought. In particular, small Boltzmann factors 
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(i.e., large energy differences) will tend to favor the Metropolis method, in line with 
intuitive considerations. 

In addition, however, we may anticipate a dependence on the number of states in 
the problem and also on the proportion of these states which are accessible at each 
step of the chain. These effects can already be seen in the Ising problems (with qii = 0) 
where for one spin the FM method is always superior while for two spins the choice 
depends on the value of the Boltzmann factor. In order to examine these effects 
more clearly we turn to some other simple model problems. 

(d) An n-State Model with Uniform Probability 

A simple model to study is that in which all II states have the same probability and 
in which any new state can be reached at each step, according to 

qij = (n - 1)-l, i#j, 
qii = 0. 

For the Metropolis case the eigenvalues are unity and 12 - 1 repeated values of 
-(n - 1)-l while for the FM case they are unity and n - 1 repeated values of 
+(n - 2)(n - 1)-l. Thus the FM method converges more rapidly when n < 4 and 
the Metropolis method for PZ > 4. When n = 4 all the eigenvalues are identical in 
the two cases. This confirms the notion that the existence of many states in the problem 
will tend to favor the Metropolis method. 

In this example there was the greatest possible accessibility of states at each step. 
In typical physical applications only a certain proportion of the system states will be 
accessible in a single step of the chain. In order to study the effect of this we study 
systems with differing accessibility. 

(e) Six-State Models with Limited Accessibility 

In these models there is again uniform probability 7~~ for the states but the number 
of states accessible at each step has been varied. Thus, in addition to the above model, 
we have looked at the “ladder” and “next-neighbor” models, with qii given by the 
matrices 

Q ladder = 

Qn-n = 

‘0 

Q 

0 

0 

0 

?j 
go&o00 
ogo~oo 

1 

oo~ogo’ 
00040& 
.& 0 0 0 4 0 
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The eigenvalues of the ladder model are (1, +, 4, - +, -+, -1) for the Metropolis 
case and (1, Q, 2, 4, 2, 0) for the FM case, so with this very limited accessibility the 
FM method is indeed superior for n = 6. This therefore contrasts with the case of 
complete accessibility discussed before. The “next-neighbor” model is intermediate 
with regard to accessibility. In this case the subdominant eigenvalues are equal in 
magnitude (-4 for the Metropolis case and + for the FM case) so that we would expect 
similar convergence rates in this case. 

It is evident that the number of accessible states at each step is quite critical. This 
is not unexpected in view of the intuitive arguments mentioned earlier. Of course, 
as discussed before, a nonuniform limit distribution would also be expected to favor 
the Metropolis method in most instances. 

DISCUSSION 

The above simple examples show that no blanket answer is possible as to which 
method will lead to faster convergence. Certain effects are, however, quite clear. The 
Metropolis method evidently becomes more favorable (i) as the number of states 
accessible at each step increases, and (ii) as the probability differences between the 
states increase, i.e., as the spread of reduced energies increases. 

With this in mind it is possible to understand the success noted by Cunningham 
and Meijer [5] for the FM method, since in that application only two states are 
accessible at each step of the chain. 

In more typical applications the number of accessible states is enormous at each 
step. For fluids a trial move usually occurs for one particle, into a local volume 
determined by a “maximum step size”: the number of states thus depends on the 
number of significant figures kept by the computer, and will be very large. The 
calculations we have carried out therefore clearly support the intuitive arguments 
suggesting that the Metropolis method will be superior in that case. 

It would be satisfying to use our exact results to evaluate those intuitive ideas. 
This is not too difficult in the case of the suggestion that convergence will be enhanced 
if at each step the chain assigns the system to new states with relative probabilities 
according as well as possible with their relative probabilities in the limit distribution. 
Suppose that m states, k = 1, 2 ,..., m are accessible from state i in a single step, 
and define the probability pj of one of them as 

Then the standard deviation 

U = T 9TiWZ-1 f {(pij - pj)2)1i2 

j=l 

provides a measure of the closeness of the one-step distribution to the limiting distri- 
bution. Some u-values for both methods for some of our model systems are shown in 
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TABLE I 

Model 

Two-state, qla = qzl = q I 
4 - n1 

I I 
4 - ‘IT1 

4 - s> 4 - 4) I 
n-State, uniform limit distribution, qii = (n - 1)-r, i # j 2/b - 2) 2/M - 2) 
Six-state, ladder 413 2 

Six-state, next neighbor 1 Q 

Six-state, all states accessible at each step 4 !i 

Table 1 and compared with the subdominant eigenvalues A’ and hence the convergence 
rates: Small values of 1 A’ 1 and (z should go hand in hand if the suggestion is correct. 

This intuition seems rather successful. It can be seen that for the two state case, 
in fact, uM/(TF exactly equals 1 &‘/&’ I, so the criterion even correctly predicts the 
value of q at which the two methods are equally effective. For the n-state cases where 
all states are of equal probability and are all accessible at each step, once again the 
criterion correctly predicts the changeover from FM to Metropolis at n = 4. It would 
also have led one to expect the FM method to be superior for the n = 6 “ladder” 
model, as is the case. 

When applied to simulations where many states are accessible at each step, this 
criterion will favor the Metropolis method. This is because px & & and the term 
( pii - pi)2 will therefore dominate the expression for the standard deviation. Typically 
this will be true of the Metropolis chain as well, but since pL > pff , then crF > (TV 
(for a given qij matrix) and the criterion favors the Metropolis method. 
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